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Filtering of the output signal of dynamically tuned 
gravimeters 

Igor Korobiichuk, Olena Bezvesilna,  Michał Nowicki, Roman Szewczyk 
 

Abstract—  In this paper, we present the gyroscopic gravimeter state algorithm, with digital processing of sensor orientation information. 
We researched errors in gyroscopic gravimeter state assessment and typical errors influences on the gyroscopic gravimeter law of motion. 
The algorithm allows efficient filtration of most random and systematic errors.  

Index Terms— filtering, gravimeter, gravimetric measuring complex, Cramer's rule,  estimation algorithm, precession oscillation period, 
nonlinear distortion 
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1 INTRODUCTION                                                                     

HE need to improve the accuracy and speed of a dou-
ble-ring dynamically tuned gravimeter in gravimetric 
measuring complex (GMC) with automatic processing 

of information is caused by the need to establish effective 
and easy-to-implement algorithms of assessment of the 
double-ring dynamically tuned gravimeter (DG). Gravime-
ters which are the primary sensing element of gravimetric 
measuring complex should have high metrological charac-
teristics: accuracy, sensitivity, speed and reliability [1]. The 
raising level of these requirements encourages to conduct 
research to improve the gravimeters accuracy and speed.  

Analysis of research. In recent years, there appeared 
many research papers on the development and research of 
optimal and suboptimal modifications of algorithms for 
discrete signal of unbalanced gyroscope filtering. Review 
of the literature and practical work on the aviation gra-
vimetry [1-4] showed that during the study of dynamically 
tuned gravimeters, the impact of gravimetric errors caused 
by nonlinear distortions of gyroscope trajectory were not 
taken into account: precession oscillations damping 
through viscous type torques action on the sensor element; 
non-synchronization of  precession oscillations; the dis-
crepancy between the value of the angular precession vi-
brations frequency used in the estimation algorithms, and 
the value of the angular precession oscillation frequency of 
the sensing element; interferences that distort the sensing 

element mode of motion. However, the impact of these 
errors, if not taken into account, can be prohibitively large 
(on the order of 10 - 30 mGal). Therefore, the goal is to im-
prove the accuracy and speed of measurement of double-
ring dynamically tuned gravimeter in gravimetric measur-
ing complex by removing these errors. However, the liter-
ature gives no information on the impact of these errors on 
the accuracy and speed of the gravimeter [1-8]. 

The aim of this paper is to solve development problems 
of the errors assessment theory of the dynamically tuned 
gravimeter with digital information processing. 

The main part. 
Let’s consider the state of development of the algo-

rithm of DG digital processing of information in the 
northward orientation of the sensing element (SE): analyti-
cally examine the error estimates due to the inadequacy of 
the accepted original model and the actual signal of DG, 
and errors due to kinematic nonlinearities. 

Movement of SE that observed with  the angle sensor 
(AS) function can be represented as 
( ) ( ) ( )ttRt V εαα ++= 1 , (1) 

where VR  - angle between AS zero and calculated north 
direction; ( )t1α  - the current state of the SE angle relative 
to the North, which is determined by solving the equation 

0sin2 10111 =++ αωαξα   (2) 

where 0ω  - circular precession frequency of small oscilla-

tions of SE; ( )tε  - precession motion trajectory of SE curva-

ture; 1ξ  - damping parameter. 
In the case of small oscillations of SE ( 11sin αα ≈ ) the 

function ( )t1α  can be represented in the form 

( ) ( )ϕωα ξ += − tAet t sin1 , (3) 

where 2
1

2
0 ξωω −= ; A ;ϕ  - amplitude and initial phase 

precession of  oscillations respectively. 

T 
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Based on the (3) SE model of motion expression, ob-
served by AS, can be written as 
( ) ( )ϕωα ξ ˆsinˆˆ 1 ++= − teARt tV , (4) 

where VR̂  - calculated angle between AS zero and calcu-

lated area to the north; Â ,ϕ̂  - calculated A ,ϕ . 

In general, in expression (4) VR̂ , Â , ϕ̂ ,ω , 1ξ  are un-
known values. 

Taking the assumptions into account, motion model (4) 
can be described by the expression 

( ) tAtARt sc
V ωωα cosˆsinˆˆ ++= , (5) 

where ϕ̂cosˆˆ AAc = , ϕ̂sinˆˆ AAs = . 
State vector to be estimated in this case, can be written 

as 
[ ]sc

V
N AARx ˆˆˆˆ = .  

For examining the problem of estimation by least 
squares: 

( )∑
=

−++=
n

i
iisic

N
N tAtARF

1

2

cos
ˆsinˆˆ αωω . (6) 

Here ( )ii tαα =  SE angular position at time 

( ) ( )nttiti ,11 =∆−=  when monitoring movement of SE 

in observation time cT ; t∆  - discrete of time interval of in-

formation obtaining. 11 +∆= −tTn c  - the number of ob-

served samples for cT . 

Function minimum NF  is reached at 

0ˆˆˆ =
∂
∂

=
∂
∂

=
∂
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s

N

c

N
V
N

A
F

A
F

R
F

. (7) 

Conditions (7) are equivalent to the matrix equation 

NN
N zxc =ˆ . (8) 
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Let us define the observation system (8). It is known 
that homogeneous system of algebraic equations has a 
unique solution when its main determinant is not zero. We 
show under certain conditions 0det ≠Nc . 

Within matrix theory it is known that the Gramm’s de-
terminant is a presentation 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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where m21 x,...,x,x  - a set of n - dimensional vectors, 

( )ji xx  - scalar product of vectors ji xx , ,and [ ]nji ,1, ∈ . 

Qualifier D  - positive when vectors m21 x,...,x,x are line-
arly independent. If we accept 
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the determinant of the system (8) is the Gramm’s determi-
nant. So if 321 x,x,x are linearly independent, 0det >Nc  
and the system (8) is always solvable in only one way. We 
find conditions where 321 x,x,x  are linearly independent. 

Consider the case when 3=n . Linear dependence of 
vectors 321 x,x,x is equivalent to the system of equations 

0332211 =++ xbxbxb , (11) 

λλ
λλ
λλ cossin2
2cos2sin1

cossin1
101

=















=′D . (12) 

where t∆=ωλ . 
It follows that 

( )2,1,0;2
2
1; ±±=






 +≠≠ kkk πλπλ . (13) 

0≠′D i.e. vectors 321 x,x,x are linearly independent. Ob-

viously, if the conditions (13) vectors 321 x,x,x are linearly 

independent and at 3>n . 
Thus, if the conditions 

ω
π

ω
π

ω
π ktktn 2

2
;;3 +≠∆≠∆≥ , (14) 

system (8) can be solved in only one way. We prove the 
solvability condition of the system (8) is equivalent to ex-
amining evidence of observation system. 

Let us solve the system (8), after adjusting the amount 
of trigonometric functions to their final expression. After 
replacement, we write the system (8) in the form 

N
nN

N
n zxc ,, ˆ λλ = , (15) 

where 
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The system (15) solution can be offered by Gauss sam-
pling main element or Cramer's rule. In this method to 
solve the system elements vector Nx̂  can be represented as 

( ) ( )
( ) ( )
( ) ( ),detˆ

;detˆ
;detˆ

333223113
1

,

332222112
1

,

331221111
1

,

NNNNNNN
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NNNNNNN
n

N
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zAzAzAcA
zAzAzAcR

++=

++=

++=

−

−

−

λ

λ

λ

, (16) 

where N
ijA  - algebraic additional elements N

ijc  matrix N
nc ,λ . 

Expanding the expression NR̂ , we obtain 
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where  

( )λλλ nnk sinsin
2

sin1 += , 

λλλ sin
2

1sin
2

sin22
−

−=
nnk ,  

λλλ sin
2

1cos
2

sin23
−

−=
nnk ,  

( ) ( )1cos;1sin;
1

3
1

2
1

1 −=−== ∑∑∑
===

iSiSS
n

i
i

N
n

i
i

N
n

i
i

N λαλαα  

Ratings of amplitude A  and the initial phase ϕ  pre-
cession oscillations are determined through cA  and sA  
and expressions 

22 ˆˆˆ
sc AAA += , (18) 
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Let us study the error of assessment of the DG. For this, 
we present the solution of the differential equation (2) with 

!3
sin

3ααα −≈  in the form of 

( ) ( ) ( )01001 3sinsin 11 ϕϕα ξξ +++= −− pteApteAt tt , (19) 

where 
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AA ≅ , 10 ξω >> . 

Expanding ( )t1α in Taylor series in the parameters p  

and ξ  in a point of ( )0,0ω  and, leaving only two terms of 
the expansion, we obtain 
( )

( ) ( )−+−++

++≈

00

3
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3cos
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192

cossin
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, (20) 

( )0001 sin ϕωξ +− ttA  

On the other hand, Taylor series decomposition models 

feature motion of SE (5) the parameters ω,,ˆ,ˆ
sc

N AAR  in a 

point of ( )0000 ,,ˆ,ˆ ωSC
N AAR  and leaving the first two terms 

of the expansion in a row, we obtain 
( )

+∆+∆++

++∆+=

iSiCS

C
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i
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tARRt
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000

cosˆsinˆcosˆ
sinˆˆˆ
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. (21) 

( ) ( )ittAt εϕωω ++∆+ 0001 ˆcosˆ  

 

where NNN RRR 0
ˆˆˆ −=∆ , CCC AAA 0

ˆˆˆ −=∆ , 

SSS AAA 0
ˆˆˆ −=∆ , 0ωωω −=∆ - assessment of the error.  

After substituting expressions (20) and (21) in the func-
tion (6), we obtain 
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Conditions to achieve a minimum functional equivalent of 
matrix equation 

NNN
n fc =δλ
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,0 , (24) 

where the matrix NNN
n fc ˆˆ

,0 =δλ 0λλ = ; t∆= 00 ωλ ; 
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Using Cramer's rule for finding NR̂∆ we obtain 
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=
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Expanding expression (25) and releasing further for 
convenience when writing code λ  we obtain an evaluation 
error expression  
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( )[ ]itnd ελ ,,3  - errors due to distortion of the observed law 
of SE motion. 

At 001,0 Tt ≤∆ ( )1
00 2 −= πωT  we appropriately simpli-

fy the expression (26) with 0→∆t , constTH = making 

the transition to the limit NR̂∆ , thus we obtain  
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CTu 0ω= . 
NR1

ˆ∆  - assessment of the error component caused by the 

third harmonic of the SE law of motion; NR2
ˆ∆  - component 

estimation error caused by equivalent friction; NR3
ˆ∆  - 

Component estimation error caused by non-isochronism 

fluctuations; NR4
ˆ∆  - component estimation error caused by 

inaccurate consideration of frequency oscillations preces-

sion; NR5
ˆ∆  - component estimation error caused by distor-

tion of the law of motion as a result of wrong moments on 
SE and errors in the AS. 

Let us analyze the components N
jR̂∆ ( )4,1=j  errors of 

assessment NR̂̂∆ . As can be seen from their expressions 
maximums defined parameters 1

0
1

00 ,, −− ⋅∆ ωωξωA  and 
time-dependent observation information that is propor-
tional coefficients ( )ω1d  and ( )ω2d . 

As can be seen from the graph (Fig. 1a) ( )HTd1  de-

pendence  monotonically decreases to 0465,1 T  then 

changes sign. The points at which ( ) 01 =HTd are optimal 
in the sense of becoming a zero maximum values of the 

components NR2
ˆ∆ , NR3

ˆ∆ , NR4
ˆ∆  and observation time. The 

smallest optimal observation time is 0465,1 TTC = . 

Coefficient ( )CTd2  (Fig. 1b) also decreases monoton-

ically 0640,0 TTC = then changes sign and performs 
damped oscillations repeatedly when crossing the x-axis. 
Some zero ( )CTd2  can be found directly 

0kTTC = , ( )3,2,1=k . (28) 

 
a) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015                                                                                                         1336 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

 
b) 

 
Fig. 1. Dependence of the impact 1d , 2d  

errors NR1
ˆ∆  from 0T  

 
Coefficient ( )CTd1  and ( )CTd2  can be considered as 

some gain of the error N
jR̂∆ . If measurement ( )CTd1  can 

be called smooth the whole strength of obtaining infor-
mation gain no more than twice, the coefficient ( )CTd2  has 
sharp drops, causing 6 - 8 time gain of error estimates in 

02,0 TTC ≤  and more than fourfold reduction when 

06,0 TTC > . 
Fig. 2 shows the dependence of the maximum values of 

the components of error estimation ( )N
iR̂max ∆ : 

- error NR1
ˆ∆  (Figure 2, curve 1) seen in precession ampli-

tude fluctuations °=100A  and 06,0 TTC < ; at 06,0 TTC >  
the maximum error of less than 2 angle; 

- error NR1
ˆ∆  (Fig. 7.2, curve 2) at ( ) 03,0...2,0 TTC = may 

exceed 100 angle at °=10A ; 
- whereas, in actual use 41

0 105 −− ⋅≤⋅∆ ωω  and 
41

01 10−− ≤⋅ωξ  at °=10A  and 01,0 TTC ≥  we obtain 

( ) 1ˆmax 2 <∆ NR  angle and ( ) 5,3ˆmax 4 ≤∆ NR  angle (Figure 
2, curve 3). 

On the other hand, the expression of error evaluation 
shows that the error components are harmonic functions of 
initial phase fluctuations 0ϕ  with a period π2  and 

π132 −⋅ . For a given observation time information for each 

of the components of the error N
jR̂∆  is optimal, in the 

sense of transformation in this part zero initial phase, 
namely: 

 

 
Fig. 2. Dependence ( )N

iR̂∆  from 

CT : 11 =− i ; 32 =− i ; 23 =− i ; 4 
 
We turn to the analysis of component error assessment 

of NR5
ˆ∆ , due to distortions law of motion as a result of 

unwanted  moments on the SE and the noise in the AS con-
trol channel . According to expression (26) and with (25), 
we obtain 
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Through this passage to the limit in terms 0→∆t  and 
constTC =  we obtain an expression for the errors of as-

sessment in the form: 

( ) ( ) ( ) ( )∫∫∫ −=+
CCC TTT

tdttutdttudttuu
000

2 cossin2sin
2

sin4sin ωεωεε , 

05
ˆ ω=∆ NR , (29) 

( )
2

sin8sin 2 uuuu =+ . 

 
The influence of typical interference with gravimeter 

law of motion. 
1. In the event of adverse moment at the SE, which 

varies linearly, interference ( )tε  has the form 

( ) tkt ∂=ε , (30) 

where ∂k  - slope drift. 
Substituting expression ( )tε  in the formula (29) gives 

C
N TkR ∂=∆

2
1ˆ

51 , (31) 

that is proportional to the slope of the drift error and ob-
servation time. 
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2. In the event of SE on the date of exponential obstacle 
type ( )tε  in the form of 

( ) t
eeat

τ

ε
−

= , (32) 

where ea  - The value of obstacles to 0=t ;τ  - time of con-
stant obstacles. 

Expression (29) after substituting (32) and limiting 
transition 0→∆t , constTC =  has the form 
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ˆ uaR Э
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( )
2

sin8sin 2 uuuu =+  

where ωτ=1u . 

As can be seen from the expression (33), the error NR52
ˆ∆  

defined parameters of interference ea ,τ  and depends on 
the observation data. The dependence of the error changes 

CT  presented in two charts at 1: c100=τ  and 2: c=τ  and 

1=ta , thus the proposed error decreases monotonically 
with increasing observation time, and reduce errors more 
quickly than smaller time constant τ . If a limited time, 
observing this error can make a systematic error compo-
nent evaluation. 

3. Harmonic interference can be caused by unsteady 
thermal state of SE and the influence of periodic motions at 
a frequency of oscillation of the SE pendulum. In the first 
case, the interference with the period of change commensu-
rate period of precession oscillations; the second - period 
interferences hundred times smaller than the oscillation 
period of precession SE. In both cases, the interference is 
given in the form 
( ) ( )1sin ϕε +Ω= tat r  (34) 

here ra  - amplitude noise; Ω  - angular frequency interfer-

ence; 1ϕ  - phase shift between the interference and preces-
sion fluctuations. 

After substitution of (34) into equation (29) and limit-
ing transition 0→∆t , constTC =  we obtain an expression 
for error evaluation 

( ) 





 +=∆ 13353 2

sin,ˆ ϕµµ uudaR r
N , (34) 
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+

+

−+

=

µ

µ

µ

µ
µ

µ

µ
,(35) 

0ω
µ Ω
= , HTu 0ω= . 

Dependency errors (7) NR53
ˆ∆  and expression (35)  in-

fers, that the error NR53
ˆ∆  is harmonically damped, and the 

oscillation period of the sine wave is determined by the µ . 
Zero error value is determined from the expression 

( )1
02 ϕπ

µ
−= kTTH , (36) 

( )3,2,1=k . 
Increased frequency of change increases interference 

uncertainty for small observation intervals and a sharp de-
crease due to increased estimation error CT . Thus, the 

100=µ  and 01,0 TTC ≤  amplify intereference a hundred 

times, while 015,0 TTC ≥  reduces it a hundred times and at 

03,0 TTC ≥  there is little effect on accuracy assessment. 
Thus, the low-frequency noise estimation algorithm 

slightly choke at 01,0 TTT C ≤≤ the high-frequency noise 

( )100≥µ  is effectively filtered at 015,0 TTC ≥ , at 

03,02,0 TTC −=  there is virtually no errors assessment. 
4. Analyze the estimation error due to the presence of 

the observed laws of motion noise meter control. 
AS miss hindrance given in the form of white noise. To 

estimate the error on top use Holder’s inequality 

( ) ( )C
N TudR εΦ≤∆ 3454

ˆ , (37) 

where ( ) ( )
( )

2
sin8sin

sin
2

34 uuuu

uuuud
−+

+
= ,     

( ) ( )∫=
CT

C
C dtt

T
TF

0

21 εε ; where ( )CTFε  - Rms random 

function ( )tε  on the length of time [ ]CT,0 . 

Dependence of the ( )ud34  from CT  showed that when 

03,02,0 TTC ÷≥  coefficient ( )ud34  is almost constant, 

therefore increasing 03,02,0 TTC ÷≥  is inappropriate be-
cause the estimation error decreases significantly. 

Conclusions : 
Analysis of expression error evaluation showed that the 
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assessment of the error has five elements, which are caused 
by: nonlinear distortion of the gravimeter sensing element 
trajectory, precession oscillations damping through viscous 
type torques action on the sensor element, non-
synchronization of the precession oscillations, the discrep-
ancy between the value of the angular precession vibra-
tions frequency used in the estimation algorithms, and the 
value of the angular precession oscillation frequency of the 
sensing element, interferences that distort the sensing ele-
ment mode of motion. The first two errors are directly pro-
portional to the cube of precession oscillations amplitude, 
the second two errors are directly proportional to the first 
power of the precession fluctuations amplitude. For effec-
tive suppression of high-frequency noise and white noise 
barriers, the observation time should be 0.2 ... 0.3 of preces-
sion oscillation period. 

Areas for further research: 
1. Research and development of algorithm of assess-

ment of the double-ring dynamically unstable equilibrium 
of custom gravimeter by the least squares method. 

2. Comparative analysis of errors assessment by the 
method of the least squares and optimal Kalman filter. 
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